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Kernel density estimation is a nonparametric way to estimate the probability density function of
a random variable. For example, suppose we have a collection of random variable samples and
are curious about the shape of the underlying distribution, while only having access to a finite
and possibly limited sample size. One way to visualize this distribution is to create a histogram.
However, a histogram discretizes the samples into fixed bin sizes; it can be more useful to learn a
continuous distribution.

One way to estimate this distribution is by estimating the probability density function of the given
random variables. A kernel density estimator estimates this probability density function by first
placing a kernel around each of the samples. The estimated function is then the average over
all of these kernels; the result is a smoothed kernel that estimates the density of all the samples
together [5, 4]. The density of given a sample x is:
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where K is a kernel function, m is the number of random variable samples, and h is a bandwidth
hyperparameter. The kernel function determines how highly to weight samples based on the dis-
tance they are to the given point. There are several choices available for the kernel K, and choosing
this can be task dependent; the kernel choice can significantly affect the distribution shape, so this
is an important decision to make. Example kernel functions include normal, uniform, triangular,
and quartic. A kernel allows us to predict density at points we have not seen based on points that
we have.

The bandwidth hyperparameter h can be chosen depending on the samples, but there are rule-
of-thumb estimation strategies as well [6]. The bandwidth controls the width of the kernel; in
short, it is a way to dictate the “smoothness” of the distribution. h does not need to be fixed
though; adaptive bandwidth kernel density estimation can be powerful when the samples are multi-
dimensional [7].

Let’s visualize an example of the smoothing that a KDE can do. In Figure 1, we select 100 samples
from N(0, 1) and plot the KDE fit from these samples. A priori, we know that these samples were
generated from N(0, 1), so we can compare the KDE to the known distribution. As we can see, the
KDE is a close approximation, but not perfect. The KDE is in particular, a function of the samples
that we generated; with a larger number of samples from N(0, 1), it will more closely match the
known distribution.
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Figure 1: 100 random samples generated from N(0, 1) are shown on the x-axis in a rug-plot. We
fit a KDE to this set of samples, and see that it roughly resembles a Normal distribution centered
at 0.

Now, suppose instead of estimating a probability density function, we want to estimate a conditional
probability density function. That is, instead of estimating p(x), we want to estimate p(x|y) where y
is another random variable. The density function for conditional probabilities is a simple extension
to Equation 1:
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where we use two kernels to estimate the joint density p(x, y) and one kernel to estimate the
marginal density p(y). Conditional kernel density estimation has a wide range of applications
including timeseries data, nonparametric Bayesian inference, and visualization on large datasets [1].
The CKDE has several favorable theoretical guarantees [8], but it notably does not scale as the
size of the parameter space increases [2]. Several attempts have been made to speed them up the
CKDE [3], resulting in applications to datasets with high-dimensional samples.
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